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Rapid Summation of the Green’s Function
for the Rectangular Waveguide

Myun-Joo Park and Sangwook Nam

Abstract—A rapid calculation scheme is proposed for the potential
Green'’s functions in the rectangular waveguide. The Ewald sum tech-
nique converts the slowly convergent Green’s function series into the
sum of two rapidly convergent series through the error-function trans-
formation. The efficient numerical calculation method of the resultant
expression is also presented.

Index Terms—Ewald sum, Green'’s function, rectangular waveguide.
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wherea, b are the waveguide dimensions:n y directions, respec-

and k is the wavenumber.

I. INTRODUCTION According to the Ewald sum method [4], [5], the above Green's

In general, the method of moments (MoM) analysis of th
rectangular-waveguide problems calls for some specialized methodstT
to accelerate the slowly convergent Green's function [1], [2]. As ’
is well known, the two-dimensional infinite series representing theG
rectangular-waveguide Green'’s function has very poor convergence
property when the source and observation points are located closely
to each other along the axis of the waveguide. The origin of
this convergence problem can be traced back to that of the free-
space periodic Green’s function, for which several effective methods
have been proposed based on the combined spatial-spectral-domain
hybrid-calculation schemes [3]. A

The Ewald sum technique is a powerful method for various periodic "~
problems [4], [5] and it has also been applied to the rectangular-cavity
problems [6]. In this paper, a rapid calculation scheme is proposed for
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f6unction can be divided into two parts as follows:
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the potential Green’s functions of the rectangular waveguide basgfere E is an adjustable parameter in the Ewald sum method.

on the Ewald sum technique. The proposed method converts thepe

integrals in (3) can be evaluated in terms of the complementary

Green’s function into the sum of the spatial and spectral series. SiRggor function [4], [5], with the following results:

all terms of the two series are weighted by the fast-decaying error
function, they are both exponentially convergent, and the Green’s
function can be calculated accurately with only a small number
of terms in the series. In addition, several effective calculation
methods are devised for the rapid numerical evaluation of the resultant
expressions, which results in further computational savings in the
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practical implementation of the proposed method. f(z = 2 vmn, E)

Il. THEORY

The potential Green’s functions for the rectangular waveguide can
be written as the diagonal dyad [1]. Each component of the Green's
dyad can be expressed in two different forms, one is the modal seriesG
in the spectral domain and the other is the image series in the spatial
domain. The two following forms are given explicitly for the
component of the magnetic-vector potential Green’s function:
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Loosely speaking, th&?,, and theGZ,, series correspond to the

mv”:‘)/ , . modal and image expansion of the waveguide Green’s function,
ccos T BTY L RTY respectively, wi_th eac_h term of the series weighted by the _complemen-
a b b tary error function. Since the complementary error functiefa (=)
__JL i=0 behaves asymptotically asp (—z7)/+/7z, the above two series are
o 2, i#0 both rapidly convergent.
V2. =(mx/a)? + (n7/b)? — K* (1) In many practical situations, the medium inside the waveguide is

lossless, and then, the above expressions can be simplified further
ntrﬂ reduce the computational burden. In that case, the wavenumber
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whereRe [4] designates the real part of a complex numHeSim-
ilarly, the following simplified form can be used for the propagating
mode terms of the??,, series:
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where Im [A] denotes the imaginary part of a complex number
A. As a result of the above simplifications, the total number of
complex error-function evaluation is reduced by the factor of twoy, 4 Typical convergence behavior of the Green's functighl,) in
Furthermore, novel methods have been developed for the efﬂue,q%dm expansiofiz’ = 0.5a, y' = 0.5b, 2 = 0.1a, y = 0.1b).
numerical calculation of these reduced forms, which are given below.

Number of Terms

In general, the numerical calculation of the error functions with 15 T T T T T T
complex argument requires a considerable amount of computation G",.G",
time. However, a careful examination of the above reduced forms G, .G, -
reveals that the complex error functions appear in one of the following ~ 0-.001 - - 7
two forms in the present method: =
Re {exp (—jkR) erfc (RE — jk/2E)} £ teos .
= Re{exp (—j2zy) erfc (z — jy)}, x=RE, y=k/2FE 0
® § 1e09f i
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The above compound forms can be calculated effectively using 1e-15 . . . ) . O *l
the following series expansions derived from the infinite series 10 20 30 40 50 60

approximation of the complex error function [7, eq. (7.1.29)]: Number of T
umper or lerms

Re {exp (—j2zy) erfe (2 — jy)} Fig. 2. Average convergence behavior of the Ewald sum method.
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In the case of the real error function, various aproximation formulas | e
are available for its effective numerical calculation [7]. 30 1 L 1 1 L 1
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IIl. NUMERICAL RESULT w(ab)
The proposed method has been applied to the stan¥abéind Fig. 3. Change of the calculation time with variation of the Ewald sum
waveguide WR9Q« = 2.186 cm, b = 1.016 cm). parameterk.
Fig. 1 shows the typical convergence behavior for tfe com-
ponent of the magnetic-vector potential Green’s function in modddo points are on the same cross-sectional plane in the waveguide
expansion (1). As the axial distance between the source and obger—= :'). The situation is even worse for the image expansion
vation point gets closer, the convergence of the Green’s functioh the Green’s function, and no convergence have been obtained
becomes worse, and it does not seem to converge at all when tiwenerically for the three cases treated in Fig. 1.
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Fig. 4. Normalized susceptance of the centered circular aperture in the Gaetano Marrocco, Marco Sabbadini, and Fernando Bardati

cross-sectional plane of a rectangular waveguidtenavelength).

Abstract—Material inhomogeneities are taken into account in the
In comparison, the Ewald sum-based calculations presentedsifndard finite—difference time-domain method by staircase modeling of
Fig. 2 show very rapid convergence. The average error decrea gium boundaries. Resolution is, therefore, limited by Yee’s cell sizes. In
) tiall th b f cal I. ted t . In Fi this paper, a new scheme is proposed, which improves material resolution
exponenlla y as the num. gr of calculate erms |ncreases: N F9yfthout increasing the demand of computer resources.
superscriptsd and F' desiginates the magnetic- and electric-vector ] o ) o
potential functions, respectively. The results shown in this figure havendex Terms—Dbielectric inhomogeneity, FDTD method, subgridding.
been obtained through averaging Green'’s function calculations over
625 dn‘fe_rent squrce—observa_nor_l point pairs (25 source poingd _ I. INTRODUCTION
observation points) evenly distributed on the same cross-sectlona_ll_h finite-diff time-d in (FDTD thod 111 i I
plane of the waveguidée: = ='). On average, 18.73 and 22.01 terms . € finite-qitierence time-domain ( ) method [ ] IS we
were needed to obtain I6 and 107 convergence, respectively suited to compute electromagnetic-field components, which are tan-

Therefore, the proposed method can achieve sufficient accuracy gsptlalt_to _tthe interface da|m§nt? dn;ferent d:celectn;:h med;? ' DleLectrlg |
most numerical applications with only about 20 term calculations. Iscontinuities ‘are modeled by plané surfaces through mesh noda

The next result concerns the optimum choice of the Ewald erlr?imS while each elementary cell is homogeneously filled. To analyze
parameterE. In Fig. 3, relative calculation times are given as &omplicated structures, such as irregularly shaped and inhomoge-

function of the paramete®. For the small and large values Ofneguls m|crowavte devices, it Ilf/l necessatrr)]/ to uc'isel_ a ﬂ?e ce'lll_ size
E, the total calculation time increases due to the slow converge arge computer resources. Moreover, the modeling ot curvilinear
émdarles [see Fig. 1(a)] requires staircase approximation in order

of the spatial and spectral series, respectively. The overall aver (()? . :
accommodate the structure to the computational grid. In such a

calculation time is minimized for the® values in the range of ) o . .
0.67/v/ab — 0.97 /v/ab under the proposed calculation schemes. S35 the accuracy is related to grid-size refinement, i.e., to computer
' ’ , rgsources. Halving the cell size improves boundary accommodation

Finally, Fig. 4 shows the application of the proposed metho Fia. 1(bY. M ical in t f tational burd
to the scattering analysis of a centered circular aperture in tl?(?_e 19. 1(b)]. More economical in erms of computational burder,
cross-sectional plane of the rectangular waveguide [8]. The Mo inhomogeneous cell can be treated as it was homogeneously filled

analysis employed the Galerkin’s method with triangular-roofto a medium with parametees o, ., which are obtained by volume

basis functions. The aperture has been discretized with 90 triang ggraging of the different media inside the cell. However, this method

elements and 145 basis functions. It took about 30 s to obtain cHES not give very accurate results. Alternative formulations have

point data on a Sun UltraSparkl workstation. The calculated rESLFI%en pr’oposed,_ which model boun_darles_k_)y Ipcal modification of
agree well with those by the variational method [8] within the errd}/laxwell s e_qu_atlons [21-14], local grid mod|f|c§t|0n [5], or glpbally
bound of the variational formula. irregular grlddlng_[6], [7]._These methods differ subst_antlally in

the modeling of dielectric interfaces and generally require complex

algorithms and preprocessing. A different method by Gwarek [8],
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