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Rapid Summation of the Green’s Function
for the Rectangular Waveguide

Myun-Joo Park and Sangwook Nam

Abstract—A rapid calculation scheme is proposed for the potential
Green’s functions in the rectangular waveguide. The Ewald sum tech-
nique converts the slowly convergent Green’s function series into the
sum of two rapidly convergent series through the error-function trans-
formation. The efficient numerical calculation method of the resultant
expression is also presented.

Index Terms—Ewald sum, Green’s function, rectangular waveguide.

I. INTRODUCTION

In general, the method of moments (MoM) analysis of the
rectangular-waveguide problems calls for some specialized methods
to accelerate the slowly convergent Green’s function [1], [2]. As
is well known, the two-dimensional infinite series representing the
rectangular-waveguide Green’s function has very poor convergence
property when the source and observation points are located closely
to each other along the axis of the waveguide. The origin of
this convergence problem can be traced back to that of the free-
space periodic Green’s function, for which several effective methods
have been proposed based on the combined spatial–spectral-domain
hybrid-calculation schemes [3].

The Ewald sum technique is a powerful method for various periodic
problems [4], [5] and it has also been applied to the rectangular-cavity
problems [6]. In this paper, a rapid calculation scheme is proposed for
the potential Green’s functions of the rectangular waveguide based
on the Ewald sum technique. The proposed method converts the
Green’s function into the sum of the spatial and spectral series. Since
all terms of the two series are weighted by the fast-decaying error
function, they are both exponentially convergent, and the Green’s
function can be calculated accurately with only a small number
of terms in the series. In addition, several effective calculation
methods are devised for the rapid numerical evaluation of the resultant
expressions, which results in further computational savings in the
practical implementation of the proposed method.

II. THEORY

The potential Green’s functions for the rectangular waveguide can
be written as the diagonal dyad [1]. Each component of the Green’s
dyad can be expressed in two different forms, one is the modal series
in the spectral domain and the other is the image series in the spatial
domain. The two following forms are given explicitly for thêxx̂
component of the magnetic-vector potential Green’s function:
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wherea, b are the waveguide dimensions inx, y directions, respec-
tively, and k is the wavenumber.

According to the Ewald sum method [4], [5], the above Green’s
function can be divided into two parts as follows:
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whereE is an adjustable parameter in the Ewald sum method.
The integrals in (3) can be evaluated in terms of the complementary

error function [4], [5], with the following results:
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Loosely speaking, theGA
xx1 and theGA

xx2 series correspond to the
modal and image expansion of the waveguide Green’s function,
respectively, with each term of the series weighted by the complemen-
tary error function. Since the complementary error functionerfc (z)
behaves asymptotically asexp (�z2)=p�z, the above two series are
both rapidly convergent.

In many practical situations, the medium inside the waveguide is
lossless, and then, the above expressions can be simplified further
to reduce the computational burden. In that case, the wavenumberk
becomes real and theGA

xx2 series can be reduced to the following
form using the complex conjugate property of the error function [6],
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whereRe [A] designates the real part of a complex numberA. Sim-
ilarly, the following simplified form can be used for the propagating
mode terms of theGA

xx1 series:
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where Im [A] denotes the imaginary part of a complex number
A. As a result of the above simplifications, the total number of
complex error-function evaluation is reduced by the factor of two.
Furthermore, novel methods have been developed for the efficient
numerical calculation of these reduced forms, which are given below.

In general, the numerical calculation of the error functions with
complex argument requires a considerable amount of computation
time. However, a careful examination of the above reduced forms
reveals that the complex error functions appear in one of the following
two forms in the present method:
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The above compound forms can be calculated effectively using
the following series expansions derived from the infinite series
approximation of the complex error function [7, eq. (7.1.29)]:
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In the case of the real error function, various aproximation formulas
are available for its effective numerical calculation [7].

III. N UMERICAL RESULT

The proposed method has been applied to the standardX-band
waveguide WR90(a = 2:186 cm, b = 1:016 cm).

Fig. 1 shows the typical convergence behavior for thex̂x̂ com-
ponent of the magnetic-vector potential Green’s function in modal
expansion (1). As the axial distance between the source and obser-
vation point gets closer, the convergence of the Green’s function
becomes worse, and it does not seem to converge at all when the

Fig. 1. Typical convergence behavior of the Green’s function(GA
xx) in

modal expansion(x0 = 0:5a, y0 = 0:5b, x = 0:1a, y = 0:1b).

Fig. 2. Average convergence behavior of the Ewald sum method.

Fig. 3. Change of the calculation time with variation of the Ewald sum
parameterE.

two points are on the same cross-sectional plane in the waveguide
(z = z0). The situation is even worse for the image expansion
of the Green’s function, and no convergence have been obtained
numerically for the three cases treated in Fig. 1.



2166 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 12, DECEMBER 1998

Fig. 4. Normalized susceptance of the centered circular aperture in the
cross-sectional plane of a rectangular waveguide (�: wavelength).

In comparison, the Ewald sum-based calculations presented in
Fig. 2 show very rapid convergence. The average error decreases
exponentially as the number of calculated terms increases. In Fig. 2,
superscriptsA andF desiginates the magnetic- and electric-vector
potential functions, respectively. The results shown in this figure have
been obtained through averaging Green’s function calculations over
625 different source–observation point pairs (25 source points� 25
observation points) evenly distributed on the same cross-sectional
plane of the waveguide(z = z0). On average, 18.73 and 22.01 terms
were needed to obtain 10�4 and 10�5 convergence, respectively.
Therefore, the proposed method can achieve sufficient accuracy for
most numerical applications with only about 20 term calculations.

The next result concerns the optimum choice of the Ewald sum
parameterE. In Fig. 3, relative calculation times are given as a
function of the parameterE. For the small and large values of
E, the total calculation time increases due to the slow convergence
of the spatial and spectral series, respectively. The overall average
calculation time is minimized for theE values in the range of
0:6�=

p
ab� 0:9�=

p
ab under the proposed calculation schemes.

Finally, Fig. 4 shows the application of the proposed method
to the scattering analysis of a centered circular aperture in the
cross-sectional plane of the rectangular waveguide [8]. The MoM
analysis employed the Galerkin’s method with triangular-rooftop
basis functions. The aperture has been discretized with 90 triangular
elements and 145 basis functions. It took about 30 s to obtain one
point data on a Sun UltraSpark1 workstation. The calculated results
agree well with those by the variational method [8] within the error
bound of the variational formula.
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FDTD Improvement by Dielectric
Subgrid Resolution

Gaetano Marrocco, Marco Sabbadini, and Fernando Bardati

Abstract—Material inhomogeneities are taken into account in the
standard finite–difference time-domain method by staircase modeling of
medium boundaries. Resolution is, therefore, limited by Yee’s cell sizes. In
this paper, a new scheme is proposed, which improves material resolution
without increasing the demand of computer resources.

Index Terms—Dielectric inhomogeneity, FDTD method, subgridding.

I. INTRODUCTION

The finite-difference time-domain (FDTD) method [1] is well
suited to compute electromagnetic-field components, which are tan-
gential to the interface among different dielectric media. Dielectric
discontinuities are modeled by plane surfaces through mesh nodal
points while each elementary cell is homogeneously filled. To analyze
complicated structures, such as irregularly shaped and inhomoge-
neous microwave devices, it is necessary to use a fine cell size
and large computer resources. Moreover, the modeling of curvilinear
boundaries [see Fig. 1(a)] requires staircase approximation in order
to accommodate the structure to the computational grid. In such a
case, the accuracy is related to grid-size refinement, i.e., to computer
resources. Halving the cell size improves boundary accommodation
[see Fig. 1(b)]. More economical in terms of computational burden,
an inhomogeneous cell can be treated as it was homogeneously filled
by a medium with parameters", �, �, which are obtained by volume
averaging of the different media inside the cell. However, this method
does not give very accurate results. Alternative formulations have
been proposed, which model boundaries by local modification of
Maxwell’s equations [2]–[4], local grid modification [5], or globally
irregular gridding [6], [7]. These methods differ substantially in
the modeling of dielectric interfaces and generally require complex
algorithms and preprocessing. A different method by Gwarek [8],
[9] is based on separate modeling of several kinds of dielectric
discontinuities, which may occur when a standard FDTD cell is
intersected by a dielectric interface [see Fig. 1(c)]. In this method,
a couple of effective parameters is associated to each intersection,
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